Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Chem Biomed Imaging ; 2(1): 4-26, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38274040

RESUMEN

Brachytherapy is an established treatment modality that has been globally utilized for the therapy of malignant solid tumors. However, classic therapeutic sealed sources used in brachytherapy must be surgically implanted directly into the tumor site and removed after the requisite period of treatment. In order to avoid the trauma involved in the surgical procedures and prevent undesirable radioactive distribution at the cancerous site, well-dispersed radiolabeled nanomaterials are now being explored for brachytherapy applications. This emerging field has been coined "nanoscale brachytherapy". Despite present-day advancements, an ongoing challenge is obtaining an advanced, functional nanomaterial that concurrently incorporates features of high radiolabeling yield, short labeling time, good radiolabeling stability, and long tumor retention time without leakage of radioactivity to the nontargeted organs. Further, attachment of suitable targeting ligands to the nanoplatforms would widen the nanoscale brachytherapy approach to tumors expressing various phenotypes. Molecular imaging using radiolabeled nanoplatforms enables noninvasive visualization of cellular functions and biological processes in vivo. In vivo imaging also aids in visualizing the localization and retention of the radiolabeled nanoplatforms at the tumor site for the requisite time period to render safe and effective therapy. Herein, we review the advancements over the last several years in the synthesis and use of functionalized radiolabeled nanoplatforms as a noninvasive substitute to standard brachytherapy sources. The limitations of present-day brachytherapy sealed sources are analyzed, while highlighting the advantages of using radiolabeled nanoparticles (NPs) for this purpose. The recent progress in the development of different radiolabeling methods, delivery techniques and nanoparticle internalization mechanisms are discussed. The preclinical studies performed to date are summarized with an emphasis on the current challenges toward the future translation of nanoscale brachytherapy in routine clinical practices.

3.
Adv Mater ; 36(5): e2308286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37971203

RESUMEN

Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.


Asunto(s)
Hipertermia Inducida , Nanoestructuras , Neoplasias , Humanos , Nanomedicina/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nanotecnología/métodos , Nanoestructuras/uso terapéutico
4.
Adv Healthc Mater ; 13(8): e2303018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38117252

RESUMEN

Silver sulfide nanoparticles (Ag2S-NP) hold promise for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA), and photothermal therapy (PTT). However, their NIR absorbance is relatively low, and previous formulations are synthesized using toxic precursors under harsh conditions and are not effectively cleared due to their large size. Herein, sub-5 nm Ag2S-NP are synthesized and encapsulated in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses are conducted using biocompatible, aqueous reagents under ambient conditions. The encapsulation of Ag2S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and PTT effects. AgPCPP nanoparticles exhibit potent contrast properties suitable for PA and NIRF imaging, as well as for computed tomography (CT). Furthermore, AgPCPP nanoparticles readily improve the conspicuity of breast tumors in vivo. Under NIR laser irradiation, AgPCPP nanoparticles significantly reduce breast tumor growth, leading to prolonged survival compared to free Ag2S-NP. Over time, AgPCPP retention in tissues gradually decreases, without any signs of acute toxicity, providing strong evidence of their safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion after fulfilling diagnostic and therapeutic tasks, offering good prospects for clinical translation.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/terapia , Fototerapia/métodos , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos , Polímeros
5.
Adv Mater ; 36(13): e2302901, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38113460

RESUMEN

The rapid progress in the development of COVID-19 mRNA vaccines during the initial year of the pandemic has highlighted the significance of lipid nanoparticles in therapeutic delivery. Various lipid types have been investigated for the effective delivery of mRNA, each with unique functions and versatile applications. These range from their use in cancer immunotherapy and gene editing to their role in developing vaccines against infectious diseases. Nonetheless, continued exploration of novel lipids and synthetic approaches is necessary to further advance the understanding and expand the techniques for optimizing mRNA delivery. In this work, new lipids derived from FDA-approved soybean oil are facilely synthesized and these are employed for efficient mRNA delivery. EGFP and Fluc mRNA are used to evaluate the delivery efficacy of the lipid formulations both in vitro and in vivo. Furthermore, organ-specific targeting capabilities are observed in certain formulations, and their outstanding performance is demonstrated in delivering Cre mRNA for gene editing. These results showcase the potential of soybean oil-derived lipids in mRNA delivery, offering utility across a broad spectrum of bioapplications.


Asunto(s)
Nanopartículas , Vacunas , ARN Mensajero/genética , Aceite de Soja , Edición Génica/métodos
6.
View (Beijing) ; 4(5)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38076327

RESUMEN

The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.

7.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076898

RESUMEN

Silver sulfide nanoparticles (Ag 2 S-NP) have been proposed for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA) and photothermal therapy (PTT). However, their absorbance is relatively low in the NIR window used in these applications, and previous formulations were synthesized using toxic precursors under harsh conditions and have clearance issues due to their large size. Herein, we synthesized sub-5 nm Ag 2 S-NP and encapsulated them in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses were conducted using biocompatible reagents in the aqueous phase and under ambient conditions. We found that the encapsulation of Ag 2 S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and photothermal heating effects. We therefore found that AgPCPP have potent contrast properties for PA and NIRF imaging, as well as for computed tomography (CT). We demonstrated the applicability of AgPCPP nanoparticles as a multimodal imaging probe that readily improves the conspicuity of breast tumors in vivo . PTT was performed using AgPCPP with NIR laser irradiation, which led to significant reduction in breast tumor growth and prolonged survival compared to free Ag 2 S-NP. Lastly, we observed a gradual decrease in AgPCPP retention in tissues over time with no signs of acute toxicity, thus providing strong evidence of safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion once the diagnostic and therapeutic tasks are fulfilled, thus providing good prospects for translation to clinical use.

8.
ACS Nano ; 17(23): 23872-23888, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084420

RESUMEN

Acute respiratory disease syndrome (ARDS) is a common critical disease with high morbidity and mortality rates, yet specific and effective treatments for it are currently lacking. ARDS was especially apparent and rampant during the COVID-19 pandemic. Excess reactive oxygen species (ROS) production and an uncontrolled inflammatory response play a critical role in the disease progression of ARDS. Herein, we developed molybdenum nanodots (MNDs) as a functional nanomaterial with ultrasmall size, good biocompatibility, and excellent ROS scavenging ability for the treatment of acute lung injury (ALI). MNDs, which were administered intratracheally, significantly ameliorated lung oxidative stress, inflammatory response, protein permeability, and histological severity in ALI mice without inducing any safety issues. Importantly, transcriptomics analysis indicated that MNDs protected lung tissues by inhibiting the activation of the Nod-like receptor protein 3 (NLRP3)-dependent pyroptotic pathway. This work presents a promising therapeutic agent for patients suffering from ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Molibdeno/farmacología , Molibdeno/uso terapéutico , Molibdeno/metabolismo , Pandemias , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Pulmón/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Lipopolisacáridos/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38130699

RESUMEN

Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.

10.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38106126

RESUMEN

Ultrasmall silver sulfide nanoparticles (Ag 2 S-NP) have been identified as promising contrast agents for a number of modalities and in particular for dual-energy mammography. These Ag 2 S-NP have demonstrated marked advantages over clinically available agents with the ability to generate higher contrast with high biocompatibility. However, current synthesis methods are low-throughput and highly time-intensive, limiting the possibility of large animal studies or eventual clinical use of this potential imaging agent. We herein report the use of a scalable silicon microfluidic system (SSMS) for the large-scale synthesis of Ag 2 S-NP. Using SSMS chips with 1 channel, 10 parallelized channels, and 256 parallelized channels, we determined that the Ag 2 S-NP produced were of similar quality as measured by core size, concentration, UV-visible spectrometry, and in vitro contrast generation. Moreover, by combining parallelized chips with increasing reagent concentration, we were able to increase output by an overall factor of 3,400. We also found that in vivo imaging contrast generation was consistent across synthesis methods and confirmed renal clearance of the ultrasmall nanoparticles. Finally, we found best-in-class clearance of the Ag 2 S-NP occurred within 24 hours. These studies have identified a promising method for the large-scale production of Ag 2 S-NP, paving the way for eventual clinical translation.

11.
Adv Funct Mater ; 33(33)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37942189

RESUMEN

The therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides. SPNs can be doped with photosensitizers and have nearly 100% energy transfer efficiency by multiple energy transfer mechanisms. Herein, we investigated an optimized photosensitizer doped SPN as a nanosystem to harness and amplify CL for cancer theranostics. We found that semiconducting polymers significantly amplified CL energy transfer efficiency. Bimodal PET and optical imaging studies showed high tumor uptake and retention of the optimized SPNs when administered intravenously or intratumorally. Lastly, we found that photosensitizer doped SPNs have excellent potential as a cancer theranostics nanosystem in an in vivo tumor therapy study. Our study shows that SPNs are ideally suited to harness and amplify CL for cancer theranostics, which may provide a significant advancement for CRIT that are unabated by tissue penetration limits.

12.
Biomater Sci ; 11(24): 7817-7825, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873585

RESUMEN

Dual-energy computed tomography (DECT) is a commonly used imaging technique for detecting and diagnosing liver cancer. Currently, it is performed using clinically approved iodinated small molecule contrast agents (CAs). However, these iodinated CAs have several drawbacks, including sub-optimal contrast generation and contra-indication in patients with renal insufficiency. Herein, we synthesized tungsten-based CAs (i.e., WO3-x NPs) with excellent biocompatibility and investigated their effectiveness in DECT imaging. WO3-x NPs significantly enhanced the contrast between liver tumors and normal liver tissues as indicated by in vivo DECT imaging. Furthermore, WO3-x NPs exhibited excellent biocompatibility and minimal systemic toxicity. This study introduces a novel class of CAs for DECT and presents a promising method for accurate early diagnosis of liver tumors.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Humanos , Medios de Contraste , Tungsteno , Radiofármacos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Hepáticas/diagnóstico por imagen
13.
Nat Commun ; 14(1): 6087, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773239

RESUMEN

Dental caries is the most common human disease caused by oral biofilms despite the widespread use of fluoride as the primary anticaries agent. Recently, an FDA-approved iron oxide nanoparticle (ferumoxytol, Fer) has shown to kill and degrade caries-causing biofilms through catalytic activation of hydrogen peroxide. However, Fer cannot interfere with enamel acid demineralization. Here, we show notable synergy when Fer is combined with stannous fluoride (SnF2), markedly inhibiting both biofilm accumulation and enamel damage more effectively than either alone. Unexpectedly, we discover that the stability of SnF2 is enhanced when mixed with Fer in aqueous solutions while increasing catalytic activity of Fer without any additives. Notably, Fer in combination with SnF2 is exceptionally effective in controlling dental caries in vivo, even at four times lower concentrations, without adverse effects on host tissues or oral microbiome. Our results reveal a potent therapeutic synergism using approved agents while providing facile SnF2 stabilization, to prevent a widespread oral disease with reduced fluoride exposure.


Asunto(s)
Caries Dental , Fluoruros de Estaño , Humanos , Fluoruros de Estaño/farmacología , Fluoruros de Estaño/uso terapéutico , Fluoruros/farmacología , Caries Dental/prevención & control , Biopelículas , Fluoruro de Sodio/farmacología
14.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651187

RESUMEN

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we described a complex structure of a dextran-coated gold-in-gold cage nanoparticle that enabled photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser could selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observed a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections, respectively. These effects were over 100 times greater than those seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We concluded that photothermal ablation using theranostic nanoparticles is a rapid, precise, and nontoxic method to detect and treat biofilm-associated infections.


Asunto(s)
Nanopartículas , Técnicas Fotoacústicas , Infección de Heridas , Animales , Ratones , Antibacterianos , Biopelículas , Oro/farmacología , Oro/química , Nanopartículas/química , Medicina de Precisión
15.
J Nanobiotechnology ; 21(1): 211, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415158

RESUMEN

Lung cancer has been the leading cause of cancer-related deaths worldwide for decades. Despite the increasing understanding of the underlying disease mechanisms, the prognosis still remains poor for many patients. Novel adjuvant therapies have emerged as a promising treatment method to augment conventional methods and boost the therapeutic effects of primary therapies. Adjuvant therapy based on nanomedicine has gained considerable interest for supporting and enhancing traditional therapies, such as chemotherapy, immunotherapy, and radiotherapy, due to the tunable physicochemical features and ease of synthetic design of nanomaterials. In addition, nanomedicine can provide protective effects against other therapies by reducing adverse side effects through precise disease targeting. Therefore, nanomedicine-based adjuvant therapies have been extensively employed in a wide range of preclinical and clinical cancer treatments to overcome the drawbacks of conventional therapies. In this review, we mainly discuss the recent advances in adjuvant nanomedicine for lung cancer treatment and highlight their functions in improving the therapeutic outcome of other therapies, which may inspire new ideas for advanced lung cancer therapies and stimulate research efforts around this topic.


Asunto(s)
Neoplasias Pulmonares , Nanoestructuras , Neoplasias , Humanos , Nanomedicina , Neoplasias Pulmonares/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Terapia Combinada , Neoplasias/tratamiento farmacológico
16.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214850

RESUMEN

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.

18.
Eur J Nucl Med Mol Imaging ; 50(8): 2353-2374, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929181

RESUMEN

PURPOSE: This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS: We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS: Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.


Asunto(s)
Neoplasias Pulmonares , Medicina de Precisión , Humanos , Radioisótopos/uso terapéutico , Diagnóstico por Imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Radiofármacos/uso terapéutico
20.
ACS Appl Mater Interfaces ; 14(34): 39274-39284, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35975982

RESUMEN

Significant work has been done to develop nanoparticle contrast agents for computed tomography (CT), with a focus on identifying safer and more effective formulations. Contrast agents for spectral photon-counting computed tomography (SPCCT), a fast-growing imaging modality derived from conventional CT, have also recently gained considerable attention. In this study, we explored the synthesis of ultrasmall ytterbium nanoparticles (YbNP) and demonstrated that, potentially, they can be used as conventional CT and SPCCT contrast agents. These nanoparticles were tested in vitro for their cytotoxicity and contrast-generating properties with a variety of imaging systems. When scanned with conventional CT and SPCCT at clinically relevant energies, YbNP are significantly more attenuating than gold nanoparticles (AuNP), the contrast agents that have been most well studied. Furthermore, YbNP were studied for their potential application for labeling and monitoring hydrogels. The presence of the YbNP payload in hydrogels allowed for hydrogel localization and tracking in vivo. Additionally, the in vivo imaging results revealed that YbNP generate higher contrast when compared to AuNP used as a label. In summary, this is the first research study to examine ultrasmall YbNP as conventional CT and SPCCT contrast agents, as well as using them in a hydrogel system to make it radiopaque. These findings underscore YbNP's utility as CT and SPCCT contrast agents, as well as their potential for tracking hydrogels in vivo.


Asunto(s)
Medios de Contraste , Nanopartículas del Metal , Oro , Hidrogeles , Nanopartículas del Metal/toxicidad , Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X/métodos , Iterbio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...